models package
Subpackages
- models.attention package
- Subpackages
- Submodules
- models.attention.lightning_module module
ResidualAttentionLightningModule
ResidualAttentionLightningModule.batch_size
ResidualAttentionLightningModule.in_channels
ResidualAttentionLightningModule.num_frames
ResidualAttentionLightningModule.dump_memory_snapshot
ResidualAttentionLightningModule.dummy_predict
ResidualAttentionLightningModule.residual_mode
ResidualAttentionLightningModule.optimizer
ResidualAttentionLightningModule.optimizer_kwargs
ResidualAttentionLightningModule.scheduler
ResidualAttentionLightningModule.scheduler_kwargs
ResidualAttentionLightningModule.loading_mode
ResidualAttentionLightningModule.multiplier
ResidualAttentionLightningModule.total_epochs
ResidualAttentionLightningModule.alpha
ResidualAttentionLightningModule.learning_rate
ResidualAttentionLightningModule.classes
ResidualAttentionLightningModule.weights_from_ckpt_path
ResidualAttentionLightningModule.forward()
ResidualAttentionLightningModule.log_metrics()
ResidualAttentionLightningModule.training_step()
ResidualAttentionLightningModule.validation_step()
ResidualAttentionLightningModule.test_step()
ResidualAttentionLightningModule.predict_step()
ResidualAttentionLightningModule.configure_optimizers()
- models.attention.model module
- models.attention.segmentation_model module
- models.attention.utils module
- Module contents
ResidualAttentionLightningModule
ResidualAttentionLightningModule.configure_optimizers()
ResidualAttentionLightningModule.forward()
ResidualAttentionLightningModule.log_metrics()
ResidualAttentionLightningModule.predict_step()
ResidualAttentionLightningModule.test_step()
ResidualAttentionLightningModule.training_step()
ResidualAttentionLightningModule.validation_step()
ResidualAttentionLightningModule.dl_classification_mode
ResidualAttentionLightningModule.eval_classification_mode
ResidualAttentionLightningModule.dice_metrics
ResidualAttentionLightningModule.other_metrics
ResidualAttentionLightningModule.hausdorff_metrics
ResidualAttentionLightningModule.infarct_metrics
ResidualAttentionLightningModule.model
ResidualAttentionLightningModule.model_type
ResidualAttentionLightningModule.de_transform
ResidualAttentionLightningModule.classes
ResidualAttentionLightningModule.optimizer
ResidualAttentionLightningModule.optimizer_kwargs
ResidualAttentionLightningModule.total_epochs
ResidualAttentionLightningModule.scheduler
ResidualAttentionLightningModule.scheduler_kwargs
ResidualAttentionLightningModule.prepare_data_per_node
ResidualAttentionLightningModule.allow_zero_length_dataloader_with_multiple_devices
ResidualAttentionLightningModule.training
ResidualAttentionLightningModule.batch_size
ResidualAttentionLightningModule.in_channels
ResidualAttentionLightningModule.num_frames
ResidualAttentionLightningModule.dump_memory_snapshot
ResidualAttentionLightningModule.dummy_predict
ResidualAttentionLightningModule.residual_mode
ResidualAttentionLightningModule.loading_mode
ResidualAttentionLightningModule.multiplier
ResidualAttentionLightningModule.alpha
ResidualAttentionLightningModule.learning_rate
ResidualAttentionLightningModule.weights_from_ckpt_path
- models.fusion package
- Subpackages
- Submodules
- models.fusion.lightning_module module
FourStreamAttentionLightningModule
FourStreamAttentionLightningModule.batch_size
FourStreamAttentionLightningModule.in_channels
FourStreamAttentionLightningModule.classes
FourStreamAttentionLightningModule.num_frames
FourStreamAttentionLightningModule.dump_memory_snapshot
FourStreamAttentionLightningModule.dummy_predict
FourStreamAttentionLightningModule.residual_mode
FourStreamAttentionLightningModule.optimizer
FourStreamAttentionLightningModule.optimizer_kwargs
FourStreamAttentionLightningModule.scheduler
FourStreamAttentionLightningModule.scheduler_kwargs
FourStreamAttentionLightningModule.loading_mode
FourStreamAttentionLightningModule.multiplier
FourStreamAttentionLightningModule.total_epochs
FourStreamAttentionLightningModule.learning_rate
FourStreamAttentionLightningModule.flat_conv
FourStreamAttentionLightningModule.single_attention_instance
FourStreamAttentionLightningModule.weights_from_ckpt_path
FourStreamAttentionLightningModule.forward()
FourStreamAttentionLightningModule.log_metrics()
FourStreamAttentionLightningModule.training_step()
FourStreamAttentionLightningModule.validation_step()
FourStreamAttentionLightningModule.test_step()
FourStreamAttentionLightningModule.predict_step()
FourStreamAttentionLightningModule.configure_optimizers()
ThreeStreamAttentionLightningModule
ThreeStreamAttentionLightningModule.batch_size
ThreeStreamAttentionLightningModule.in_channels
ThreeStreamAttentionLightningModule.classes
ThreeStreamAttentionLightningModule.num_frames
ThreeStreamAttentionLightningModule.dump_memory_snapshot
ThreeStreamAttentionLightningModule.dummy_predict
ThreeStreamAttentionLightningModule.residual_mode
ThreeStreamAttentionLightningModule.optimizer
ThreeStreamAttentionLightningModule.optimizer_kwargs
ThreeStreamAttentionLightningModule.scheduler
ThreeStreamAttentionLightningModule.scheduler_kwargs
ThreeStreamAttentionLightningModule.loading_mode
ThreeStreamAttentionLightningModule.multiplier
ThreeStreamAttentionLightningModule.total_epochs
ThreeStreamAttentionLightningModule.learning_rate
ThreeStreamAttentionLightningModule.flat_conv
ThreeStreamAttentionLightningModule.single_attention_instance
ThreeStreamAttentionLightningModule.use_stn
ThreeStreamAttentionLightningModule.weights_from_ckpt_path
ThreeStreamAttentionLightningModule.forward()
ThreeStreamAttentionLightningModule.log_metrics()
ThreeStreamAttentionLightningModule.training_step()
ThreeStreamAttentionLightningModule.validation_step()
ThreeStreamAttentionLightningModule.test_step()
ThreeStreamAttentionLightningModule.predict_step()
ThreeStreamAttentionLightningModule.configure_optimizers()
- models.fusion.model module
- models.fusion.segmentation_model module
- Module contents
Submodules
models.common module
Common definitions for the models module.
- class models.common.CommonModelMixin(*args: Any, **kwargs: Any)
Bases:
LightningModule
Common model attributes.
- dl_classification_mode
Classification mode for the dataloader instances.
- eval_classification_mode
Classification mode for the evaluation process.
- dice_metrics
A collection of dice score variants.
- other_metrics
A collection of other metrics (recall, precision, jaccard).
- model
The internal model used.
- model_type
The architecture of the model, if appropriate.
- Type:
- de_transform
The inverse transformation from augmentation of the samples by the dataloaders.
- dl_classification_mode: ClassificationMode
Classification mode for the dataloader instances.
- eval_classification_mode: ClassificationMode
Classification mode for the evaluation process.
- dice_metrics: dict[str, MetricCollection | Metric]
A collection of dice score variants.
- other_metrics: dict[str, MetricCollection]
A collection of other metrics (recall, precision, jaccard).
- hausdorff_metrics: dict[str, MetricCollection]
Just hausdorff distance metrics.
- infarct_metrics: dict[str, MetricCollection]
A collection of infarct-related clinical heuristics.
- de_transform: Compose | InverseNormalize
The inverse transformation from augmentation of the samples by the dataloaders.
- scheduler: type[LRScheduler] | LRScheduler | str
Learning rate scheduler.
- setup(stage: str) None
Called at the beginning of fit (train + validate), validate, test, or predict. This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP.
- Parameters:
stage – either
'fit'
,'validate'
,'test'
, or'predict'
Example:
class LitModel(...): def __init__(self): self.l1 = None def prepare_data(self): download_data() tokenize() # don't do this self.something = else def setup(self, stage): data = load_data(...) self.l1 = nn.Linear(28, data.num_classes)
- on_train_start()
Called at the beginning of training after sanity check.
- log_metrics(prefix: Literal['train', 'val', 'test']) None
Implement shared metric logging epoch end here.
Note: This is to prevent circular imports with the logging module.
- on_train_epoch_end() None
Called in the training loop at the very end of the epoch.
To access all batch outputs at the end of the epoch, you can cache step outputs as an attribute of the
LightningModule
and access them in this hook:class MyLightningModule(L.LightningModule): def __init__(self): super().__init__() self.training_step_outputs = [] def training_step(self): loss = ... self.training_step_outputs.append(loss) return loss def on_train_epoch_end(self): # do something with all training_step outputs, for example: epoch_mean = torch.stack(self.training_step_outputs).mean() self.log("training_epoch_mean", epoch_mean) # free up the memory self.training_step_outputs.clear()
- models.common.ENCODER_OUTPUT_SHAPES = {'resnet101': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'resnet152': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'resnet18': [(64, 112, 112), (64, 56, 56), (128, 28, 28), (256, 14, 14), (512, 7, 7)], 'resnet34': [(64, 112, 112), (64, 56, 56), (128, 28, 28), (256, 14, 14), (512, 7, 7)], 'resnet50': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'resnext101_32x16d': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'resnext101_32x32d': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'resnext101_32x48d': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'resnext101_32x4d': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'resnext101_32x8d': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'resnext50_32x4d': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'se_resnet101': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'se_resnet152': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'se_resnet50': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'se_resnext101_32x4d': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'se_resnext50_32x4d': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'senet154': [(128, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'tscse_resnet101': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'tscse_resnet152': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'tscse_resnet50': [(64, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)], 'tscsenet154': [(128, 112, 112), (256, 56, 56), (512, 28, 28), (1024, 14, 14), (2048, 7, 7)]}
Output shapes for the different ResNet models. The output shapes are used to calculate the number of output channels for each 1D temporal convolutional block.
models.default_unet module
Contains the default U-Net implementation LightningModule wrapper.
- class models.default_unet.LightningUnetWrapper(batch_size: int, metric: Metric | None = None, num_frames: int = 30, loss: Module | str | None = None, model_type: ModelType = ModelType.UNET, encoder_name: str = 'resnet34', encoder_depth: int = 5, encoder_weights: str | None = 'imagenet', in_channels: int = 90, classes: int = 4, weights_from_ckpt_path: str | None = None, optimizer: Optimizer | str = 'adamw', optimizer_kwargs: dict[str, Any] | None = None, scheduler: LRScheduler | str = 'gradual_warmup_scheduler', scheduler_kwargs: dict[str, Any] | None = None, multiplier: int = 2, total_epochs: int = 50, alpha: float = 1.0, _beta: float = 0.0, learning_rate: float = 0.0001, dl_classification_mode: ClassificationMode = ClassificationMode.MULTICLASS_MODE, eval_classification_mode: ClassificationMode = ClassificationMode.MULTILABEL_MODE, loading_mode: LoadingMode = LoadingMode.RGB, dump_memory_snapshot: bool = False, dummy_predict: DummyPredictMode = DummyPredictMode.NONE, metric_mode: MetricMode = MetricMode.INCLUDE_EMPTY_CLASS, metric_div_zero: float = 1.0)
Bases:
CommonModelMixin
LightningModule wrapper for U-Net model.
- on_train_start()
Called at the beginning of training after sanity check.
- forward(x: Tensor) Tensor
Same as
torch.nn.Module.forward()
.- Parameters:
*args – Whatever you decide to pass into the forward method.
**kwargs – Keyword arguments are also possible.
- Returns:
Your model’s output
- log_metrics(prefix) None
Implement shared metric logging epoch end here.
Note: This is to prevent circular imports with the logging module.
- training_step(batch: tuple[Tensor, Tensor, str], batch_idx: int) Tensor
Forward pass for the model with dataloader batches.
- Parameters:
batch – Batch of frames, masks, and filenames.
batch_idx – Index of the batch in the epoch.
- Returns:
Training loss.
- Return type:
torch.tensor
- Raises:
AssertionError – Prediction shape and ground truth mask shapes are different.
- validation_step(batch: tuple[Tensor, Tensor, str], batch_idx: int)
Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Returns:
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
# if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders,
validation_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
- test_step(batch: tuple[Tensor, Tensor, str], batch_idx: int) None
Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Returns:
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders,
test_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to test you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
- predict_step(batch: tuple[Tensor, Tensor, str | list[str]], batch_idx: int, dataloader_idx: int = 0)
Forward pass for the model for one minibatch of a test epoch.
- configure_optimizers()
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.
- Returns:
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_scheduler_config
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
.None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.# The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated", # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, )
Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.Note
Some things to know:
Lightning calls
.backward()
and.step()
automatically in case of automatic optimization.If a learning rate scheduler is specified in
configure_optimizers()
with key"interval"
(default “epoch”) in the scheduler configuration, Lightning will call the scheduler’s.step()
method automatically in case of automatic optimization.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizer.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, you will have to switch to ‘manual optimization’ mode and step them yourself.
If you need to control how often the optimizer steps, override the
optimizer_step()
hook.
models.transunet module
TransU-Net model customisation.
Based on the implementation at https://github.com/Beckschen/TransUNet
- class models.transunet.ResNetV2(*args: Any, **kwargs: Any)
Bases:
ResNetV2
Implementation of pre-activation (v2) ResNet mode with paramaterised in_channels.
- class models.transunet.Embeddings(*args: Any, **kwargs: Any)
Bases:
Embeddings
Embeddings from patch, position embeddings with parameterised in_channels.
- class models.transunet.Transformer(*args: Any, **kwargs: Any)
Bases:
Transformer
Transformer model with parameterised in_channels.
- class models.transunet.TransUnet(*args: Any, **kwargs: Any)
Bases:
VisionTransformer
TransU-Net model.
models.two_plus_one module
2+1D U-Net model.
- class models.two_plus_one.TemporalConvolutionalType(*values)
Bases:
Enum
1D Temporal Convolutional Layer type.
- ORIGINAL = 1
Original 1D convolutional operation with significant use of reshape.
- DILATED = 2
Modified 1D convolutional operation to replace stride with dilation.
- TEMPORAL_3D = 3
Uses a 3D convolutional operation to reduce calls to reshape.
- get_class()
Get the class of the convolutional layer for instantiation.
- models.two_plus_one.get_temporal_conv_type(query: str) TemporalConvolutionalType
Get the temporal convolutional type from a string input.
- Parameters:
query – The temporal convolutional type.
- Raises:
KeyError – If the type is not an implemented type.
- class models.two_plus_one.OneD(in_channels: int, out_channels: int, num_frames: int, flat: bool = False, activation: str | Type[Module] | None = None)
Bases:
Module
1D Temporal Convolutional Block.
- forward(x: Tensor) Tensor
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class models.two_plus_one.DilatedOneD(in_channels: int, out_channels: int, num_frames: int, sequence_length: int, flat: bool = False, activation: str | type[Module] | None = None)
Bases:
Module
1D Temporal Convolutional Block with dilations.
- forward(x: Tensor) Tensor
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class models.two_plus_one.Temporal3DConv(in_channels: int, out_channels: int, num_frames: int, flat: bool = False, activation: str | type[Module] | None = None)
Bases:
Module
1D Temporal Convolution for 5D Tensor input.
- forward(x: Tensor) Tensor
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- models.two_plus_one.compress_2(stacked_outputs: Tensor, block: OneD) Tensor
Apply the OneD temporal convolution on the stacked outputs.
- Parameters:
stacked_outputs – 5D tensor of shape (num_frames, batch_size, num_channels, h, w).
block – 1d temporal convolutional block.
- Returns:
4D tensor of shape (batch_size, num_channels, h, w).
- models.two_plus_one.compress_dilated(stacked_outputs: Tensor, block: DilatedOneD) Tensor
Apply the DilatedOneD temporal convolution on the stacked outputs.
- Parameters:
stacked_outputs – 5D tensor of shape (num_frames, batch_size, num_channels, h, w).
block – 1d temporal convolutional block.
- Returns:
4D tensor of shape (batch_size, num_channels, h, w).
- class models.two_plus_one.TwoPlusOneUnet(*args, **kwargs)
Bases:
SegmentationModel
2+1D U-Net model.
- initialize() None
Initialize the model.
This method initializes the decoder and the segmentation head. It also initializes the 1D temporal convolutional blocks with the correct number of output channels for each layer of the encoder.
- class models.two_plus_one.TwoPlusOneUnetLightning(batch_size: int, metric: Metric | None = None, loss: Module | str | None = None, model_type: ModelType = ModelType.UNET, encoder_name: str = 'resnet34', encoder_depth: int = 5, encoder_weights: str | None = 'imagenet', in_channels: int = 3, classes: int = 1, num_frames: Literal[5, 10, 15, 20, 30] = 5, weights_from_ckpt_path: str | None = None, temporal_conv_type: TemporalConvolutionalType = TemporalConvolutionalType.ORIGINAL, optimizer: Optimizer | str = 'adamw', optimizer_kwargs: dict[str, Any] | None = None, scheduler: LRScheduler | str = 'gradual_warmup_scheduler', scheduler_kwargs: dict[str, Any] | None = None, multiplier: int = 2, total_epochs: int = 50, alpha: float = 1.0, _beta: float = 0.0, learning_rate: float = 0.0001, dl_classification_mode: ClassificationMode = ClassificationMode.MULTICLASS_MODE, eval_classification_mode: ClassificationMode = ClassificationMode.MULTICLASS_MODE, loading_mode: LoadingMode = LoadingMode.RGB, dump_memory_snapshot: bool = False, flat_conv: bool = False, unet_activation: str | None = None, metric_mode: MetricMode = MetricMode.INCLUDE_EMPTY_CLASS, metric_div_zero: float = 1.0)
Bases:
CommonModelMixin
A LightningModule wrapper for the modified 2+1 U-Net architecture.
- forward(x: Tensor) Tensor
Same as
torch.nn.Module.forward()
.- Parameters:
*args – Whatever you decide to pass into the forward method.
**kwargs – Keyword arguments are also possible.
- Returns:
Your model’s output
- log_metrics(prefix: Literal['train', 'val', 'test']) None
Implement shared metric logging epoch end here.
Note: This is to prevent circular imports with the logging module.
- training_step(batch: tuple[Tensor, Tensor, str], batch_idx: int) Tensor
Forward pass for the model with dataloader batches.
- Parameters:
batch – Batch of frames, masks, and filenames.
batch_idx – Index of the batch in the epoch.
- Returns:
Training loss.
- Raises:
AssertionError – Prediction shape and ground truth mask shapes are different.
- validation_step(batch: tuple[Tensor, Tensor, str], batch_idx: int)
Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Returns:
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
# if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders,
validation_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
- test_step(batch: tuple[Tensor, Tensor, str], batch_idx: int)
Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Returns:
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders,
test_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to test you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
- predict_step(batch: tuple[Tensor, Tensor, str | list[str]], batch_idx: int, dataloader_idx: int = 0) tuple[Tensor, Tensor, str | list[str]]
Forward pass for the model for one minibatch of a test epoch.
- Parameters:
batch – Batch of frames, masks, and filenames.
batch_idx – Index of the batch in the epoch.
dataloader_idx – Index of the dataloader.
- Returns:
Mask predictions, original images, and filename.
- configure_optimizers()
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.
- Returns:
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_scheduler_config
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
.None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.# The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated", # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, )
Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.Note
Some things to know:
Lightning calls
.backward()
and.step()
automatically in case of automatic optimization.If a learning rate scheduler is specified in
configure_optimizers()
with key"interval"
(default “epoch”) in the scheduler configuration, Lightning will call the scheduler’s.step()
method automatically in case of automatic optimization.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizer.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, you will have to switch to ‘manual optimization’ mode and step them yourself.
If you need to control how often the optimizer steps, override the
optimizer_step()
hook.
models.two_stream module
Two Stream U-Net model with LGE and Cine inputs.
- class models.two_stream.TwoStreamUnet(*args, **kwargs)
Bases:
SegmentationModel
Two Stream U-Net model with LGE and Cine inputs.
- initialize()
Initialise the model’s decoder, segmentation head, and classification head.
- class models.two_stream.TwoStreamUnetLightning(batch_size: int, metric: Metric | None = None, loss: Module | str | None = None, model_type: ModelType = ModelType.UNET, encoder_name: str = 'resnet34', encoder_depth: int = 5, encoder_weights: str | None = 'imagenet', in_channels: int = 3, classes: int = 1, num_frames: int = 30, weights_from_ckpt_path: str | None = None, optimizer: Optimizer | str = 'adamw', optimizer_kwargs: dict[str, Any] | None = None, scheduler: LRScheduler | str = 'gradual_warmup_scheduler', scheduler_kwargs: dict[str, Any] | None = None, multiplier: int = 2, total_epochs: int = 50, alpha: float = 1.0, _beta: float = 0.0, learning_rate: float = 0.0001, dl_classification_mode: ClassificationMode = ClassificationMode.MULTICLASS_MODE, eval_classification_mode: ClassificationMode = ClassificationMode.MULTICLASS_MODE, loading_mode: LoadingMode = LoadingMode.RGB, dump_memory_snapshot: bool = False, metric_mode: MetricMode = MetricMode.INCLUDE_EMPTY_CLASS, metric_div_zero: float = 1.0)
Bases:
CommonModelMixin
Two stream U-Net for LGE & cine CMR.
- log_metrics(prefix) None
Implement shared metric logging epoch end here.
Note: This is to prevent circular imports with the logging module.
- training_step(batch: tuple[Tensor, Tensor, Tensor, str], batch_idx: int) Tensor
Forward pass for the model with dataloader batches.
- Parameters:
batch – Batch of LGE images, cine frames, masks, and filenames.
batch_idx – Index of the batch in the epoch.
- Returns:
Training loss.
- Return type:
torch.tensor
- Raises:
AssertionError – Prediction shape and ground truth mask shapes are different.
- validation_step(batch: tuple[Tensor, Tensor, Tensor, str], batch_idx: int)
Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Returns:
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
# if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders,
validation_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
- test_step(batch: tuple[Tensor, Tensor, Tensor, str], batch_idx: int)
Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Returns:
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders,
test_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to test you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
- predict_step(batch: tuple[Tensor, Tensor, Tensor, str | list[str]], batch_idx: int, dataloader_idx: int = 0)
Step function called during
predict()
. By default, it callsforward()
. Override to add any processing logic.The
predict_step()
is used to scale inference on multi-devices.To prevent an OOM error, it is possible to use
BasePredictionWriter
callback to write the predictions to disk or database after each batch or on epoch end.The
BasePredictionWriter
should be used while using a spawn based accelerator. This happens forTrainer(strategy="ddp_spawn")
or training on 8 TPU cores withTrainer(accelerator="tpu", devices=8)
as predictions won’t be returned.- Parameters:
batch – The output of your data iterable, normally a
DataLoader
.batch_idx – The index of this batch.
dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)
- Returns:
Predicted output (optional).
Example
class MyModel(LightningModule): def predict_step(self, batch, batch_idx, dataloader_idx=0): return self(batch) dm = ... model = MyModel() trainer = Trainer(accelerator="gpu", devices=2) predictions = trainer.predict(model, dm)
- configure_optimizers()
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.
- Returns:
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_scheduler_config
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
.None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.# The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated", # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, )
Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.Note
Some things to know:
Lightning calls
.backward()
and.step()
automatically in case of automatic optimization.If a learning rate scheduler is specified in
configure_optimizers()
with key"interval"
(default “epoch”) in the scheduler configuration, Lightning will call the scheduler’s.step()
method automatically in case of automatic optimization.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizer.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, you will have to switch to ‘manual optimization’ mode and step them yourself.
If you need to control how often the optimizer steps, override the
optimizer_step()
hook.
Module contents
Model architectures and implementations for the project.